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The Probability Distribution of the Magnitude of a Structure Factor. 
II. The Non-centrosymmetr ic  Crystal 

BY H. HAUPTMAN AND J. KARLE 

U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A.  

(Received 26 May 1952) 

The general formula for the compound probability distribution of the real and imaginary parts of 
the structure factor is derived for all rigid non-centrosymmetric crystals as a function of the indices 
h, k, 1. The probability distribution for the magnitude of the structure factor is then readily found. 
The distributions and the averages of any power of IFI corresponding to a particular space group. 
may be obtained from the general formula by means of routine mathematical computations. The 
analysis includes the case that the crystal contains atoms in special positions as well as in general 
positions. Illustrative examples are worked out in detail. 

I n t r o d u c t i o n  

In  the preceding paper (Karle & Hauptman,  1953), 
hereafter described as I, the probability distributions 
of the structure factors for centrosymmetric crystals 
were obtained. This paper is devoted to the derivation 
of the probabili ty distribution for the magnitude of 
the structure factor for tho non-centro~ymmetric 
cry~al .  The probabili ty distribution o~ the phase o~ 
the structure factor for any crystal will be given in 
subsequent papers. As in the case of the centrosym- 
metric crystal, the distributions for each space group 
may  be computed from the general formula to any 
desired accuracy by means of routine mathematical  
calculations. 

In  paper I the probabil i ty distribution for the 
structure factor coincided with tha t  for the real l~.~rt 
of the structure factor. In  the present paper, the 
previous method is generalized to yield the compound 
or joint probabili ty distribution of the real and 
imaginary pa r t s  of the structure factor. From this 
joint distribution, it is possible to derive both the 
distribution for the magnitude and for the phase. For 
those values of h, k, 1 for which either the real or 
imaginary part  of the structure factor is identically 
zero, the methods of I apply. 

J o i n t  d i s t r i b u t i o n  

We trea~ first the case in which the crystal has atoms 

only in general positions. The structure factor is 
defined by 

F = x + i r ,  O) 
where 

~ ln JV ln 
X = 2 fi~(z# y# zi), Y = 2 fi7(z# Yi, zj), (2) 

i=1 i=1 

n is the symmetry  number, f i  is the atomic scattering 
factor, N is the number of atoms in the unit cell, 
and ~i = ~(x], Yi, z]) and 7i = ~(xi, Y# zi) 'are known 
trigonometric functions of h, k, l a n d  the atomic 

coordinates which are determined by the space group. 
If the x# Yi, zi are uniformly and independently 
distributed in the interval (0, 1), then the compound 
probability tha t  ~i lie in the interval (a, ~ + d a )  and 
tha t  7i lie in the interval (fl, fl+dfl) is denoted by 
the function p(a, fl)d~dfl. This function will be de- 
rived in the Appendix. I t  is now possible to find the 
probability Q(A, B) that X b~ lc~ than A and that 
Y be less than B. We have 

Q(A, B) - =  71) P(~.v/n, 7~v/n) X 
- - 0 0 " * "  " ' "  

T(~I, 71, . . . ,  ~mn, 7.v/,)d~l d71 ...d~=vl~d7~v#~, (3) 

where 

T(~I, 71, . . . ,  ~%'., 7:v-) 
- - { 2 _ _ l f : s i n [ ( X ~ - - A ) X ] d x }  

{ l _ I i ° ° s i n [ ( Y - - B ) Y ] d y  } 
~r ,~o y 

= 1  i f X < A  and Y < B ,  

= 0  i f X > A  or Y > B .  

(4) 

By diflerentiating successively with respect to A and 
with re,poet to B, we obtMn 

f I o~Q(A, B) _ P x r ( A ,  B) - 1 ~ dy . . .  
OA OB "~ o -co 

7 /,)cos [(X-A)x] × 

cos [(Y--B)y] d~ 1 d71 . . .  d~vl,flrl,v/,~ , (5) 

where P(A, B)dAdB is the compound probabili ty tha t  
X lie between A and A +dA and tha t  Y lie between 
B and B+dB.  The probabili ty distribution of R =- 
(X~+ Y~)½ cannot be obtained directly from those for 
X and Y separately as found in the previous paper 
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because X and Y are not independently distributed. 
In order to evaluate (5), the following definitions are 
introduced: 

k k 

A o = B o ---- O, A~, = 2 f ~ i ,  Be = 2'f~7~, 
i=I i=I 

k = 1, 2, . . . ,  N / n .  
Therefore 

and 
A~, = A~_~+fe~, B~ -= B~_l+fe~e 

(6) 

(7) 

(S) A~v/n = X,  B,v/~ = Y .  

A typical operation in the evaluation of (5) is 

t ~ )  cos [(A~--A)x] cos [(B~--B)y] d ~ d ~  = 
- - 0 0  - -  (9) 

l ~_~ f2p(~e,_ ~]e){cos [(Ak_I--A)x] cos (felix) 

--sin [(Ae_I--A)x] sin (feSex)} × 

{cos [(Be_I--B)y] cos (fe~ey) 

--sin [(Be_~--B)y] sin (fe~ey)}d~ed~e. (10) 

As seen from the Appendix, P(~k, r]k) is an even func- 
tion of both ~ and r]~ so that  (10) reduces to 

cos [(A~_t--A)x] cos [(B~_~--B)y]q(f~x,f~y), (11) 

where q(f~ x, f~y) = 

-I ~ -~I~p(~, ~]~)cos ( f ~ x ) c o s  ( f ~ y ) d ~ d ~ .  (12) 
,) 

- - O o  - -  ,) co 

By repeated application of this result we obtain from 
(5) the desired compound probability function, 

Pxe(A,  B) 

1 S ~ I ? c o  s -~r/n = --  Ax  cos By 11 q(fex, f ey )dxdy ,  (13) 
792 0 k = l  

which may be compared with equation (2) of I. 
The expansion of both cosines in (12) yields 

1 2 2 1 2 2 q(fkx, fkY) = 1--~..fkx meo--~..fkY mo2 

1 _4 4 1 4 2 2  1 4 
-31- ~ . . f  kx m 4 0  J[_ 2~. 2 ! f  kX y m 2 2 -  ~- -~..f ky4m04 

I 
x'moo-  ,e 

6 !  . . . .  

1 1 -6 e 
2!4!f~.x2yCme4---~.f~y moe+ . . . .  (14) 

where 

f~o i~o ~P($  )d~ d~] m# = k, ~k k k • 
- - 0 0  - - 0 0  

(15) 

As may be verified from P(~k, ~]k) given in the Appen- 
dix, or from the meaning of a moment as an expected 
value or average, (15) becomes 

f151S 1 mq = ~4~]J dx dy dz , (16) 
0 0 0 

and the subscript k has been omitted in (16) since 
~e and ~k aS functions of x~, Yk, zk are independent of k. 
I t  is seen that  the function Pxr(A ,  B) is expressible 
in terms of the moments mip which in turn are 
readily computed from (16) once ~ and ~1 are given 
as functions of x, y, z. The problem which remains 
is to derive the probability distribution for the 
magnitude, R, of the structure factor from (13) and 
to express it in the more useful form of a rapidly 
converging infinite series. 

We seek the function PRo(c, qD) such that  
PRO(C, ~)dcdcf is the compound probability that  R 
lie between c and c+dc and that  0, the phase angle, 
lie between ~ and ~ + d ~ ,  where 

R = ~(X2+yg),  0 = t a n - l y / X ,  (17) 
o r  

X = R c o s 0 ,  Y = R s i n 0 .  (18) 
Since 

cos 0 sin 0 I dRdOI d X d Y  RdRdO (19) 
- - R s i n 0  Rcos01  

R will lie in the interval (c, c+dc) and 0 will lie in 
the interval (q0, q0+d~) if and only if the point (X, Y) 
lies in the elementary area cdcd~ at the point (c cos q~, 
c sin ~). The probability of the latter event is, how- 
ever, Pxg(C cos ~, c sin q~)cdcdq~, so that  

PRO(C, qD) = cPxy (c cos ~, c sin ~) (20) 

and is readily found from (13). The probability PR (c)dc 
that  R lie between c and c+dc is obtained from (20) 
by means of 

PR(C) = c cos ~, c sin ~)d~ (21) 

(Uspensky, 1937, p. 246). 
The series for PxY (A, B) may be obtained from (13) 

and (14) by a method used previously (Hauptman & 
Karle, 1952, p. 50) and is found to be 

P x r  (A, B) 

l f °° f°°  ~/~ = - -  cos (Ax) cos (By) IIq(f~.x, fky)dxdy 
:r~2 0 0 k = l  

A s B 2 

exp(- 4 V(~a~2o ) 4 V(~ak02)) 
= N 

4~VZakeoZako2 

{1-- [ (12(Eake°)e-12AeZaee°+ Aa)Z(½a~2°-ae4°)2,(Zak2o)/ 

(2Zak20 -- A 2) (2Zak0 e _ B e)Z(akeoako2 -- ake2 ) + 
24(Zakeo)2(Zakoe)3 

( 12 (Zako2) 2-12B2~ako2 + B 4) ~(½a~o2--ako4!] + 
24(27ak02) 4 J 
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__ [(120 (~V'ak2o)3-- 180A 2 (Zak2o)2+ 30A4Za~2o--Ae)~(½aa2o--a~2oa~4o+a~eo) 

+ 

26(~ak2o) e 

(12 (Sak2o) 2 - 1 2 A ~ ' X a ~ : 2 o + A  4) (2Ia,o2--B 2) Z(a220ako2--ak20ak22--ako2akao-+ak42) 
26 (Zak20)4(~ak02)2 

(12 (~ak02) 2 -1  2B2Zako2 + B  4) (2~ak2o--A2)~.(a~o2ak2o--ako2ak22--ak2oakoa-+-ak24) 
-~ 26(~ak20)2(Xak02)4 

18 B 2 a 2 4 6 , 3 (120(~'ako2) 3 -  0 (~v' ko2) + 3 0 B  .~ako2--B ).~l(½ako2--ako2ako4+a~06)] / + 
26(Xak02) e J - . . . j '  , 

(22) 

where 

mJ~-J (23) 
akij-- iljl  

and all summations in (22) extend from k = 1 to N/n. 
The substitution of (22) into (21) gives the desired 
series for the probability distribution of the magnitude 

of the structure factor for any non-centrosymmetrie 
crystal. A survey of the space groups indicates tha t  
m20 = m e 2  for all space groups and all h, k, 1 for which 
neither m20 nor too2 is zero. The latter  case has already 
been treated in I. In any event, (21) always applies 
and may  be evaluated in terms of Bessel functions. 
In  the case tha t  m2o = me2 = m2, (21) reduces to 

n2v4 

= 2 1 - -  + Sm z ] 

n2G6 
(96m~ 3-18m2M4+MG) (1 

2 × 4 ×  3 3 6 m 2 G 2 \ 

3 n c  2 3n2c 4 n3v6 
+ 

naas (2304m~--576m2M4 + 32m2M e -  M s + Ps)--n~a~ (1152m42--28Sm2M4 + Ps) 
4 4 2 X 4 X 6 X 8 m 2 a  2 

1-- 2nc2 + 3n2c4 n3V6 n4c8 
' (24) 

Table 1. Moments for the space groups P1, P2, P222, having atoms in general positions only 

~Tb40 m60 ~?'42 ?T~80 ~n62 
Space n m 2 or m22 or or or or m44 
group m~  ~06 m24 m08 ~n26 

1 3 1 5 1 35 '5 3 
P1 1 2 8 8 1--6 1--6 128 128 128 

k # O  1 3 1 5 1 35 5 3 
h = l = 0 1 ~ ~ ~ 1--6 1---6 128 128 128 

P2  / 
I k # O  9 3 25 5 / 3 5 \ 2  175 105 

h 2 + l 2 # 0 2 1 4 4 "4- 4 ~-8-) 64 64 I 
3 s 35 s 53 33 

P222 hkl ~ 0 4 2 -~ 4 5 a 1 2-- )-  2- ~ 2--g 

Space 
group 

P1 

P2 k #  o 

P222 hkl # 0 

Table 2. Averages of the powers of IF] derived from the moments of Table 1 

<IFl> <IFl~> <lFi'> 

½(~0.~)½(1+i~ + 0"~ "" 2 -~"  ) ~ 2 ~ - 0 . ,  

½(~ta~)½ (1 + 0.4 0.__L_e 
+ 240.s . . .  ) 0"o 20.22 --0" 4 

½(~0.2)½ (1 3a4 590.6 
640.~ 960.~ " ' )  0., 20.~ +30.. 

<[Fle> 

6G~ -- 90"20" 4 + 4G e 

6G~ -- 90"20" 4 + 40" e 

27 
6a~ + ~-0"20"4--590.e 
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where M s = m4o-~-2m23-[-mo4, (25) 

M 6 = mr0 -~- 3m42 -~- 3m24-~-mo6 , (26) 

M s : mso-~-4m62-~-6m44-~-4m26-~-mos, (27) 

Ps = 35ra~0 + 108m~2 + 35m024 + 60ma0m22 
-[- 6m40mc4 ~- 60meam22 , (28) 

A" A'/n 

and ri~ = ~ f ~ =  n.~£f~'. 
~'=l j=l 

Average value of [FIP 

The average value of [F]" can be immediately ob- 
tained from the probabili ty distribution (24) by means 
of the integral formula 

I xP exp [ - -ax  3] dx -- (29) p + l  
0 ~ z a ~  

where p > --1. We find from (24) tha t  

tr ibution which is identical with tha t  derived from the 
moments in the first two rows. In general, however, 
different space groups lead to different distributions. 
The h, k, l triples within a space group fall into different 
families, and the distributions of the magnitudes 
associated with the triples belonging to the same family 
are identical. Substi tution into (24) yields immediately 
the desired probabili ty distributions. The averages of 
several powers of IF] for these space groups are 
obtained from (30) and are listed in Table 2. When 
the moments mij for the space group P1 are sub- 
s t i tuted into (24) we obtain equation (10) of Haupt-  
man and Karle (1952), which was derived in a different 
manner. 

Specia l  pos i t ions  

So far, this paper has been concerned with .crystals 
having atoms only in general positions. However, the 
methods developed apply equally well to crystals 
having atoms in special positions in addition to those 

nri4 (8m]-- M 4) n2ris (96m~-- 18m2M4+M6) 
1-- ~--A2-V~V~2 : p ( p - - 2 ) +  43 p(p--2)(p--4) --  

2 × 4 m  2ri2 22× ×62m2 aa~ 

naris (2304m~--576m~M 4 + 3 2 m 2 M 6 - - M  s-j- Ps) - -n2a 2 (1152m~-- 288m~ M s ÷ Ps) 
2,,4_4 p(p--2)(p--4)(p--6)- t - . . .~ ,  (30) 2 2 × 42 X 63 × 8 "'~3 °2 

a formula which should be compared with the analogous in general positions. Equations (2) are replaced by 
formula (23) of I. Equat ion (30) gives the average the more general 
value of [FIP for all values of p > --1. I t  should be 

t t 
noted tha t  if p is an even integer, the series (30) X =  ~ f J~ i ,  Y = - X f i u #  t =  ~ IYi/ni, (34) 
terminates, i=1 i=1 j=l 

E x a m p l e s  where v is the total  number of types of positions 
The application of (24) is illustrated by deriving the (special and general) exclusive of the fixed special 
probabil i ty distributions of the structure factor positions, Ni is the number of atoms in each type  of 
magnitudes for three space groups, P1, P2, P222: posit ion, 'and ni is the number of equivalent atoms in 

the corresponding type. While N~ depends upon the 
P I"  ~ = cos 2:r(hx-+-ky-f-lz), ~ particular crystal specimen, v and ni depend only on 

= sin 2ze(hx~,ky÷lz). J (31) the space group. The functions ~j maintain the same 
form for each fixed value of i, and the functions Uj 

P2" ~ = 2 cos 2ze(hx-i-lz)cos 2:tky, ~ (32) maintain the same form for each fixed value of i, 
U = 2 cos 2ze(hx+lz)sin 2:~ky. J i.e. for values of j corresponding to a fixed type  

of position and, together with v and n~, are known for 
P222: ~ = 4 cos 2:rhx cos 2:~ky cos 2zdz, } (33) each space group. The probabil i ty tha t  ~j lie between 

= --4 sin 2~hx sin 2~ky sin 2~lz. a and ~ + d ~  and tha t  ~j lie between fl and fl÷dfl 
now depends on j and is denoted by pj(a, fl)dadfl 

The moments are readily found from (16) and are where pj(a, fl) is derived in the Appendix. However, 
exhibited in Table 1. The case k = 0 for space group as before, only the moments 
P2 and the case hkl = 0 for space group P222 may  
be t reated by the method of the cent rosymmetr ic  ~°~Ociflipk(~X ' [l[l~l~u~dxdydz 
crystal (I), since the imaginary par t  of the structure mkij = J-o~ /~)dadfl = J J J o  " " (35) 

0 0 
factor is zero, and are therefore not considered here. 
I t  is to be noted tha t  for the space groups in Table 1, are needed. If qk(fkx, fkY) is defined as follows, 
it so happens tha t  m~i = mj~, but  this property is not  
shared by all the space groups. I t  is of some in teres t  qk(fkx, fkY) 
to note tha t  the first two rows of Table 1 are identical, __ ~o~ ~ 
while t h e  moments of. the third row lead to a dis- - -  ,~-o~ ~ - P k ( a ,  fl)cos (fkxa)cos (fkyfl)dadfl, (36) 
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then, denoting as before, by Pxr(A, B)dAdB the 
probability that  X lie in the interval A, A +dA and 
that  Y lie in the interval B, B+dB,  we find that  

Pxr(A,  B) 

- -  - -  ( A ~ ) c o s  (By) 17 q~(y~x,f~y)e~dy. (37) 
y~2 O k=l 

Replacing A and B by c cos q~ and c sin ~ respectively, 
and multiplying by c, we obtain 

PRo (c, q~) : cPxr (c cos % c sin ~0), (38) 

where PRO(C, ~o)dcd9 is the probability that  the 
magnitude R lie in the interval c, c+dc and that  the 
phase 0 lie in the interval % ~+d~o. Then the desired 
probability distribution PR(C) is given by 

2:P Ro PR(C) : (c, q~)dcp, (39) 

By methods alrea~ly explained, this function may be 
written in terms of a series which is a generalization 
of (24) 

PR(C)  = 
4 2 ( C2 

c e x p  ( - ~ / 2 Z f ~ , m * * )  ~_Z$,(sm,~-(m,~o+2m,~.+m~**) ~ Y,f,m~ 
(z~f,m,2) I j ~ m ~  2 X 4 2 2 

~f~ (96m32 -- 18mk2 (mk40 + 2 mk22 -J- m~0~) + (mk60 -J- 3 mk42 ~- 3 mk24 ~- mk06)) 

2 X 4 X 6 (~f~m~) a 

2 3 " ' "  1 2 Z f ~ m ~ +  8(Z,f~m~2) 2 8(Z'f~m~2) 

C 4 

(40) 

where k ranges from 1 to t and mk2 - - -  mk20 = mko2. 
The remaining problem concerns the case that  the 

crystal also contains atoms in fixed special positions. 
If we denote by f '  = if(h, k, l) and by g' = g'(h, k, l) 

the contributions to the real part X and the imaginary 
part Y of the structure factor of the atoms in fixed 
special positions, Pxr(A, B) is obtained from (22) by 
replacing A by A- - f '  and B by B--g', giving 

( (A--f')2 (B_g,)2~ 
exp  

427ak2o 4Xako2 ] 
Pxr  (A, B) : 4~ ]/(Xak20 Xa~02) × 

1 -- [ (12 (~ak2°)9- 12(A _f,)2(Zak2o)+ (A _if)a) Z (½a~2o--akao) 

+ 

24 (~Y'ak20) 4 

(2 Zak2o-- (A _f,)2)(2Zako2_(B_g,)9) Z (ak2oako2--a,22) 
24 (~Y'ak2o) u (Zako2) 2 

+ (12(~ako2)2--12(B--g')2(Zako2)+(B--g')4)~(½a~o~--ako4)]24(2~ako2) 4 _ . .  "]/ . (41) 

Then, denoting by PRo(C, cf)dcdcp the probability that  T and ~0+d% we obtain from (41), 
R lie between c and c+dc and that  0 lie between 

c exp ( (c cos g--f')2+(c sin cp--g') 2) 

PRo(c, 9) =- 2ztXf~mk2 X 

1-- [ (3(Zf~mk2)2-6(c cos cl)--f')2~f~mk2+(c c o s  ~--f')4)Zfa(3m~2--mk4o) 

+ 

4! ( ~V f~ mk2) a 

t2  4 2 (Zf~mk2--(c cos cp--f')2)(Xf~mk2--(c sin q~--g ) ) Z f  k(mk2--mk22) 
2!2! (Zf~mk2) 4 

, ~ 4 m 2 m (3(Zf~mk~)2--6(c sin 9--g')2Xf~mk2+(c sin 9- -g  ) )Zfk(3 k2-- ko4)] 1 
4!(2f~mk2) a j - - ' " ~  " 

(42) 

By means of the following integral formulas, 

I 2neZ c o s  0 COS nOdO = 2ztI, (z) , 
o 

(43) 

~.2~ 2P(½)/ ' (n+ ½) I~(z) (44) e z cos o sin2n OdO = 
,o  (½z) ~ 

where I~(z) is the Bessel function of imaginary argu- 
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ment, PR(C) may be obtained. Owing to the complexity 
of the final results, only the first term in the series is 
given here. However, merely routine calculations are 
required to obtain as many terms as desired. We get* 

( 
C e x p  

\ - -  ~ : \ lf~.mk2 : (45) P ~ ( c )  = 2 
f k mk2 

Further  simplification may  be realized if the Maclaurin 
expansions of the Bessel functions are used, but  we 
omit this development since it involves elementary 
mathematical  manipulations. 

Concluding  r e m a r k s  

From (20) we obtain 

l : c P x r (  c Po (q~) = cos q, c sin ~)dc,  (46) 

where Po(q~)dqD is the probabili ty tha t  the phase angle 
lie in the interval (~, ~ + d ~ ) .  Equat ion (46) can be 
generalized to yield the probabili ty distribution of the 
phase angle as a consequence of a set of observed 
magnitudes. Thus the concept of the joint or compound 
probabili ty distribution forms the basis for a direct 
a t tack on the phase problem, and will be the subject 
of subsequent papers. 

A P P E N D I X  

An explicit expression for the function p(c~, %)dc~dc n, 
the compound probabili ty tha t  } lie between c~ and 
c~A-dc¢ and tha t  71 lie between c n and %+d%, may 
be derived as in I by making use of the discontinuous 
integral (4) to find the probabili ty r(c~, %) tha t  } be 

* The average of any power of IF 1 may be obtained from 
(45) in the usual way, e.g. <[FI2> = f'e+g'2-4-2.,~,f2mk2. 

less than c~ and tha t  ~ be less than %. We obtain 

r(c~, c~) = - -  
0 0 0 ~ 0 U 

× [l_ll°~sin [(;--%)v] dv] dxdydz, (47) 
do 

where ~ and ~] are functions of x , y , z , h , k ,  1 and 

p(c~, %) = a~r(c~, c , ) /ac~ac~.  

Evaluation of (47) gives 

1 {  1 1 1  

exp ( c~ 
1 1 2~2 

exp ( c~ 
,i 1 2~2 

4 
1 1 1 2~2 

+ lfofofo exp( ~r/ X 

1-- -~  ~- 3~'/ __ 37'} ""[" (48) 

The various moments mij given by (15) and re- 
quired for (22) and (24) are readily found to reduce 
to (16). 
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