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The Probability Distribution of the Magnitude of a Structure Factor.
II. The Non-centrosymmetric Crystal

By H. HauprMax AND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A.

(Received 26 May 1952)

The general formula for the compound probability distribution of the real and imaginary parts of
the structure factor is derived for all rigid non-centrosymmetric crystals as a function of the indices
h, k, 1. The probability distribution for the magnitude of the structure factor is then readily found.
The distributions and the averages of any power of |F| corresponding to a particular space group.
may be obtained from the general formula by means of routine mathematical computations. The
analysis includes the case that the crystal contains atoms in special positions as well as in general
positions. Illustrative examples are worked out in detail.

Introduction

In the preceding paper (Karle & Hauptman, 1953),
hereafter described as I, the probability distributions
of the structure factors for centrosymmetric crystals
were obtained. This paper is devoted to the derivation
of the probability distribution for the magnitude of
the structure factor for the non-centrosymmetric
crystal. The probability distribution of the phase of
the structure factor for any crystal will be given in
subsequent papers. As in the case of the centrosym-
metric crystal, the distributions for each space group
may be computed from the general formula to any
desired accuracy by means of routine mathematical
calculations.

In paper I the probability distribution for the
structure factor coincided with that for the real part
of the structure factor. In the present paper, the
previous method is generalized to yield the compound
or joint probability distribution of the real and
imaginary parts of the structure factor. From this
joint distribution, it is possible to derive both the
distribution for the magnitude and for the phase. For
those values of %, k,! for which either the real or
imaginary part of the structure factor is identically
zero, the methods of I apply.

Joint distribution
We treat first the case in which the crystal has atoms

only in general positions. The structure factor is
defined by
F—X4iY, (1)
where
N Nn
X = jzf;fj&(xja Y zi)>

Y = ﬁfﬂ'](zj; Yj» %) » (2)

n is the symmetry number, f; is the atomic scattering
factor, N is the number of a.tpms in the unit cell,
and &; = &(x;, ¥;, 2;) and n; = n(x;, y;, 2) are known
trigonometric functions of %, %! and the atomic

coordinates which are determined by the space group.
If the =, y;,2; are uniformly and independently
distributed in the interval (0, 1), then the compound
probability that ; lie in the interval («, x+da) and
that #; lie in the interval (8, f4-df) is denoted by
the function p(e, f)dxdf. This function will be de-
rived in the Appendix. It is now possible to find the
probability @(d4, B) that X be less than 4 and that
Y be less than B. We have

o, B = ..\ ptw m)- . Eim 1n) x

—00 —00
T(El, Nis oo s EN/-m n‘\'/n) df] d"]l .. 'dE;V/nan/n B (3)

where

T My e s fzv,'m 77.'\'/7;)
_ 1 E ®sin [(X—4)x]
o {2 o b4 So z dx} X

{l_l"°°sin [(Y—B)y]d
2 @) Y

4 )
=1ifX<d4dand Y < B,
=0ifX>4do0rY>RB.

By differentiating successively with respect to 4 and
with respect to B, we obtain

L rn =3 [

{ pé0 m)- . -p(Ewpm 1) co8 [(X—A)a] x
cos [(Y—B)yldé, dny .. .dEyndnyym, (5)

where P(A4, B)dAdB is the compound probability that
X lie between 4 and 4+dA4 and that Y lie between
B and B+4dB. The probability distribution of B =
(X24 Y2)* cannot be obtained directly from those for
X and Y separately as found in the previous paper

00
—00
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because X and Y are not independently distributed.
In order to evaluate (5), the following definitions are
introduced:

k k
Ay =B, =0, 4, :'zl‘fi‘fi' B, = z;fﬂ?f’
I= 7=

k=1,2,...,N/n.
Therefore
A, = Ay 1+ b By = BioiHfemie

AN/n = X, B‘V/n =Y.

(6)
()
(8)

and

A typical operation in the evaluation of (5) is

300

\ Swwp(sk, k) €08 [(d,— A)2] cos [(By— B)y] sy —
e ©)
U T e ) feos 41— 2] cos (fdia)

o —sin [(4;_1—A)a] sin (f&2)} X
{c08 [(Bes—B)y] cos (fried)

—sin [(B;_,—B)y] sin (fk’?k?/)} déidn, . (10)

As seen from the Appendix, p(&;, 7;) is an even func-
tion of both &, and 7, so that (10) reduces to

cos [(4y_1—4)x] cos [(By_,—B)gla(fex, fry) , (11)

Wwhere a(fex, fry) =

S S P(Ew 7e) €08 (fubx) c08 (fumey)dEsdmy . (12)

By repeated application of this result we obtain from
(5) the desired compound probability function,

PXY(A’B)

00 poo Nin
=%S S cos Az cos By I1 q(fyx, fry)dxdy , (13)

% Jo Yo k=1

which may be compared with equation (2) of I.
The expansion of both cosines in (12) yields

1 1
q(fex, fry) = 1— gf}%xzmzo“‘ gﬁyzm‘,z

1 1 1
+ Zf2x4m4o+ 31921 f2x2y2m22+ Zfltyq‘mm

1

1
—3i fgx“meo—m foatyPm,,
1 R 1, ]
*QTf'ka ?/4m24—afky Mog+ <+« » (14)

where

(el

my=\" " dtniotee mdgdn. (9

As may be verified from p(&,, #;) given in the Appen-
dix, or from the meaning of a moment as an expected
value or average, (15) becomes
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lolpl
m; =S S So Enldxdydz ,

090

(16)

and the subseript £ has been omitted in (16) since
£, and %, as functions of x;, y,, 2; are independent of k.
It is seen that the function Pyy(A4, B) is expressible
in terms of the moments m,;, which in turn are
readily computed from (16) once & and 7 are given
as functions of z, y, 2. The problem which remains
is to derive the probability distribution for the
magnitude, R, of the structure factor from (13) and
to express it in the more useful form of a rapidly
converging infinite series.

We seek the function Ppgy(c, @) such that
Ppy(c, p)dcdyp is the compound probability that R
lie between ¢ and c¢+dc and that 6, the phase angle,
lie between @ and @+dp, where

R = J(X2+7?), 0=tan-1Y/X, (17)
or
X =Rcosf, Y=Rsin0. (18)
Since
ixdy —| 80 sind 1de0 — RARAO, (19)

—Rsinf RcosB

R will lie in the interval (¢, c+dc) and 6 will lie in
the interval (¢, p+dg) if and only if the point (X, ¥)
lies in the elementary area cdede at the point (c cos ¢,
csin @). The probability of the latter event is, how-
ever, Pyy(c cos @, c¢sin @)cdedp, so that

Ppry(c, p) = cPxy(c cos ¢, csin @) (20)

and is readily found from (13). The probability Py (c)dc
that R lie between ¢ and c+dc is obtained from (20)

by means of
27

Pgr(c) = cS Pyy(ccos g, csin @)dp (21)
0
(Uspensky, 1937, p. 246).
The series for Pxy (4, B) may be obtained from (13)
and (14) by a method used previously (Hauptman &
Karle, 1952, p. 50) and is found to be

PXY(A’ B)

00 00 Nin
= _IES S cos (Ax) cos (By) II q(f,x, fry)dzdy
7T 0 k=1

0

(= 5~ 755

exp|— —

P 4)(Zawo) 4V (Zasr) %
4nl Lagso Zagen

{1 . [(12 (Zara0)2— 124220150+ A4) 2 (3 50— 1a0)

24(Zaygo)?
+ (22320 — A?) (2100 — B?) Z(Axa0@r02 — Upo2)
24 X aa0)* (& Apga)?
+ (12(Zaze)>*—12B*Laee +B4)Z(%aioz—“ko4)}
24(Layg)t
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[(120 (2 p0)® — 18042 (Zay0)2+30 A4 Ztgo0— A8) X (3 o0 — Apao@rao +Fiso)

28 (Zayg)®
+ (12(Zazep)* —1242X ay90+ A%) (220100 — B?) 2 (alfa0 B0 — Aa2oWao2 — Doz Grao T Gisz)
28(Zazeo)*(2tks)?
+ (12(Zayep)*—12B2X a0+ B*) (22 ay90— 4%) 2 (af02 B0 — Bro2 Buse — Ui20%k0a + i2a)
28(Zarg0)*(Lages)*
| (120(Z'a02)>— 18082 (Zaz)* +-30B4 2 akoz—‘Bs)ﬁ(%aioz—akozakm‘i‘akos)J _ } (22)
l 28(Lazy)® )
where of the structure factor for any non-centrosymmetric
myfi 23 crystal. A survey of the space groups indicates that
i = 150 (23) oy = m » for all space groups and all &, k,  for which
iyl 20 0 pace group

neither my, nor my, is zero. The latter case has already
and all summations in (22) extend from k = 1 to N/n. been treated in 1. In any event, (21) always applies
The substitution of (22) into (21) gives the desired and may be evaluated in terms of Bessel functions.
series for the probability distribution of the magnitude In the case that m,, = mgy, = m,, (21) reduces to

Ppfe) = nc exp (— n02/2m202{1 ne (8m2 ) <1_ nc? i nict )

My0y 2% 4 mag, = 8MioL
n? 06 3nc? 3nct n3ch )
—_— 18m,M,+M){1— —
T 2x4x6miol (96— 18m, M+ M) ( 2my0,  8mici:  48micd

__ nay (2304m§—576m§M4+32m2M6— Mg+ Pg)—n205(1152m3 —288m3 M .+ Py) «

2X4X6X8msop
2nc?  3mict 78 nich
(1“ 2 2 3 3 ) } ’ (24)
myo,  4mios  12mics ' 384mich
Table 1. Moments for the space groups Pl, P2, P222, having atoms in general positions only
Mg Mgo Myo Mgg Mgy
Space n my or My, or or or or My
group Moy Mog Mg Mg Mg
1 3 1 5 1 35 ‘5 3
ik ! F 3 3 T6 16 128 8 128
E+0 1 _l_ § l _5_ 1 35 5 3
h=1= 2 8 8 16 16 128 128 128
P2
E$0 9 1 9 3 25 5 35)2 175 105
BRI £ O 1 4 4 1 ( 8 64 64
33 358 58 33
29 2 —_ 3 —
P222 hkl % 0 ¢ 2 . 4 5 1 - pat .
Table 2. Averages of the powers of |F| derived from the moments of Table 1
Space
group IF) IF12) (FE) (FE)
L}
Pl (sz)i(1+ T60 + 242_2 . ) gy 203 —o0, 608 —90,0,+ 40,
LA A .
P2 k+0 ;(:wz)i(H- Toes + 340y ) 0 203—0, 605 —90,0,+40,
X 30, 5904 0, 3 5 27 _
P222 hkl+ 0 }(no‘z)i(l— 6107 060} " ) o, 203 +70 603+ - 0,0,— 590,
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where M, = myy+2mq+my, , (25)
My = mgy+3myy+3mgy+mgg , (26)
My = mgy+4mgy+6myy+4mog+mgg (27)

P, = 35m3,+108m2, + 35m2, +60m,gmo,
+6mygme,+60megms, (28)

Nn

¥
and o, =3 ff =nXf}.
j=1 j=1

Average value of |F[P

The average value of |F|? can be immediately ob-
tained from the probability distribution (24) by means
of the integral formula

5 a2 exp [—aa?]dx = — (29)
0 202

where p > —1. We find from (24) that
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tribution which is identical with that derived from the
moments in the first two rows. In general, however,
different space groups lead to different distributions.
The A, k, I triples within a space group fall into different
families, and the distributions of the magnitudes
associated with the triples belonging to the same family
are identical. Substitution into (24) yields immediately
the desired probability distributions. The averages of
several powers of |F| for these space groups are
obtained from (30) and are listed in Table 2. When
the moments m; for the space group Pl are sub-
stituted into (24) we obtain equation (10) of Haupt-
man and Karle (1952), which was derived in a different
manner.

Special positions

So far, this paper has been concerned with crystals
having atoms only in general positions. However, the
methods developed apply equally well to crystals
having atoms in special positions in addition to those

PPy = S:’cppg (0)de = r(ﬁﬂ) (?ﬁgz)m «

n204(96m3—18m, M+ M)

2

no, (8mz—M,)
{ 22 X 42mZ o2 pP—2)+

22X 42 X 6°m3 o3
n304(2304m3—576ms M ,+32moM ;— M-+ Pg)—n20? (1152m3 —288m2 M, + Py)

p(p—2)(p—4) —

22 X 42 X 62 X 82mj o}

a formula which should be compared with the analogous
formula (23) of I. Equation (30) gives the average
value of |F|? for all values of p > —1. It should be
noted that if p is an even integer, the series (30)
terminates.

Examples

The application of (24) is illustrated by deriving the
probability distributions of the structure factor
magnitudes for three space groups, Pl, P2, P222:

Pl:. & = cos 2n(ha+ky+tlz), } 31
7 = sin 2n(hxLky+1z) . (31)
P2: & = 2cos 2n(hx+1z) cos 2nky , } 39
7 = 2 cos 2n(hx+1z) sin 2xky . (32)
P222: & = 4 cos 2nthx cos 2nky cos 2nlz , } 33
7 = —4 sin 2nhx sin 2nky sin 27z . (33)

The moments are readily found from (16) and are
exhibited in Table 1. The case k£ = 0 for space group
P2 and the case hkl = 0 for space group P222 may
be treated by the method of the centrosymmetric
crystal (I), since the imaginary part of the structure
factor is zero, and are therefore not considered here.
It is to be noted that for the space groups in Table 1,
it so happens that m;; = mj;, but this property is not

shared by all the space groups. It is of some interest.

to note that the first two rows of Table 1 are identical,
while the moments of the third row lead to a dis-

Pp—2) (p—4) (p—6)+ . . } . (30)

in general positions. Equations (2) are replaced by
the more general

¢ t v
X=2f& Y=2fn, t =2 Nin;, (34)
j=1 7=1 j=1

where v is the total number of types of positions
(special and general) exclusive of the fixed special
positions, N; is the number of atoms in each type of
position, ‘and »; is the number of equivalent atoms in
the corresponding type. While V; depends upon the
particular crystal specimen, » and n; depend only on
the space group. The functions §; maintain the same
form for each fixed value of i, and the functions ¥,
maintain the same form for each fixed value of 7,
i.e. for values of j corresponding to a fixed type
of position and, together with v and »;, are known for
each space group. The probability that &; lie between
&« and x+dx and that #; lie between § and f4-dg
now depends on j and is denoted by p;(x, f)dxdf
where p;(x, f) is derived in the Appendix. However,
as before, only the moments

1

S S:g;n;;dxdydz (35)

1
0 Yo

My = Sm «Bpi(x, fldodf = S

—00

are needed. If ¢,(f:x, fry) is defined as follows,

o o % (fez, fry)
— " 2t 0 cos (i) cos (fypraadp, (36)
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then, denoting as before, by Pxy(4, B)dAdB the
probability that X lie in the interval 4, 4+dA4 and
that Y lie in the interval B, B4-dB, we find that

Pyy(4, B)
=,%S S cos (Az) cos (By) I g (fi=, fry)dzdy . (37)
0 Y0 k=1

Replacing 4 and B by ¢ cos ¢ and ¢ sin ¢ respectively,
and multiplying by ¢, we obtain

DISTRIBUTION OF THE MAGNITUDE OF A STRUCTURE FACTOR. I1

where Pgq(c, p)dcdp is the probability that the

magnitude R lie in the interval ¢, c4+dc and that the

phase 6 lie in the interval ¢, p+dp. Then the desired

probability distribution Py(c) is given by
27

Pa(e) = Puole, p)dp (39)

By methods already explained, this function may be
written in terms of a series which is a generalization

Ppry(c, ) = cPxy(ccos ¢, csin @), (38) of (24)
Pa(c) = ¢ exp (—c?/2Zfimys) fl Z [ (8mis— (Mpao+2mu00+My0n) (1_ c? + ct )
¥ Zfpms \ 2X4(Zfime)? Zfims ' 8(Zfimu)?
ng (967”'1:2— 18myo(mpao+-2mMy00+Mypos) + (Myso+3Mypan+ 3mk24+’mms))
2% 4 X 6(Zf2my,)?
3c? 3ct c®
1— : — — g 40
( 22 fimy + 8(Z fimu)? 8(Zf12cmk2)3> } (40)

where k ranges from 1 to ¢ and my, = mygy = My, .

The remaining problem concerns the case that the
crystal also contains atoms in fixed special positions.
If we denote by f' = f'(h, k,1) and by ¢" = g'(h, %, )

the contributions to the real part X and the imaginary
part Y of the structure factor of the atoms in fixed
special positions, Pxy(d4, B) is obtained from (22) by
replacing A by 4—f' and B by B—g¢’, giving

(A=f)2 (B—¢')?
o _exp<_ a0 42ak02)
xr(d, B) = 47t )/ (X agap X ao2)
{1— [(12(2am)2—12<A —fHZ ti20) +(A—F")*) Z (3 0iz0—uao)
24 (Zayg)t

4 —f')z) (22%02— (B—gl)z) 2 (@ra0 Upor—Apa2)

+ (22 Qo0 —

_}_(12(2%02)2—

24(Z apao)? (2 Apge)?

Then, denoting by Pgy(c, p)dcdp the probability that
R lie between ¢ and c+dc and that 6 lie between

12(B—g')? (Zak02)+(B—g')4)2(%a§02_ak04)] o
24 (L ayoe)* e

(41)

@ and @-+dp, we obtain from (41),

(¢ cos p—f')2+4(c sin p—g')?

¢ exp (-——

22 fymys )

PRG(c, <P) =

27 2 frmy,

X

Il— [(3 (Zfimie)2—6(c cos p—f")2Zfimue+(c cos p—f")%) Zf3 (Bmiz—myy)
1 41(Zfimye)t

(Zf ¥Mye— (¢ cos p—f ") 2) (Ef ¥ Mye—(c sin p—g )2)2f k (mk2 M)

2121(Zfimye)t

(3 (Zfime)?—6(c sin p—g' R X fimys+(c sin p—g' ) Zf1( 3mL2—mko4)J } (42)
41(Zfpmye)t B -

By means of the following integral formulas,

27
S €20 cos nfdf = 2nl,(z) , (43)
, ‘

V" . 2I'()HI"(n+4)

€250 sin®* fdf =

do (32)

where I,(z) is the Bessel function of imaginary argu-

I(z),  (44)
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ment, Pg(c) may be obtained. Owing to the complexity
of the final results, only the first term in the series is
given here. However, merely routine calculations are
required to obtain as many terms as desired. We get*

Y | (6 )

22fimye 2t
Zfimue

Further simplification may be realized if the Maclaurin

expansions of the Bessel functions are used, but we

omit this development since it involves elementary
mathematical manipulations.

cexp(—

Prle) = (45)

Concluding remarks

From (20) we obtain
o0
Py (p) =S ¢Pyy(ccos @, csin @)dc, (46)
o

where Py(@)dep is the probability that the phase angle
lie in the interval (p, p+dg). Equation (46) can be
generalized to yield the probability distribution of the
phase angle as a consequence of a set of observed
magnitudes. Thus the concept of the joint or compound
probability distribution forms the basis for a direct
attack on the phase problem, and will be the subject
of subsequent papers.

APPENDIX

An explicit expression for the function p(ce, c,)dc:dc,,
the compound probability that & lie between c; and
cs+dc, and that # lie between ¢, and ¢,+dc,, may
be derived as in I by making use of the discontinuous
integral (4) to find the probability r(cs, c,) that & be

* The average of any power of |F| may be obtained from
(43) in the usual way, e.g. {|F|®) =f249% 423 fomy,.
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less than ¢, and that # be less than ¢,. We obtain

7(ce €y) = Sl S: Sl E — l SWWM du]

o 0 Tdo u

11 (sin [(—¢,)?]

where & and # are functions of z,y,2,%, k1 and
plcg ¢,;) = &r(ce, c,)]dcsoc, .

Evaluation of (47) gives

p(cs o)
G _ %
1§1 11 O%P 2_452_2772)( 2% | o
—ZcoSoSo 57] _?2— @>
( % _ o
ST P\ Tog 9772)(1 2 b
0 Jo Yo én ——77?—*—%‘)

2
Ce c
N
16 0o 57’]

v

2¢¢ ¢ ) 22  c} |
1% —f)(l——" —">+... ,
( 2 +3§4 2 3 [
The various moments m;; given by (15) and re-

quired for (22) and (24) are readily found to reduce
to (16).

(48)
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